
2022 NDIA MICHIGAN CHAPTER
GROUND VEHICLE SYSTEMS ENGINEERING

AND TECHNOLOGY SYMPOSIUM
CGS / CYBER SECURITY OF GROUND SYSTEMS SESSION

AUGUST 16-18, 2022 - NOVI, MICHIGAN

The Tactical Smart NIC

Jason Dahlstrom, PhD1, Stephen Padnos1, James Brock, PhD1, Stephen Taylor, PhD2

1Web Sensing, LLC, Lebanon, NH

2Thayer School of Engineering at Dartmouth College, Hanover, NH

ABSTRACT
This paper describes a novel network security appliance -- the Tactical

Smart Network Interface Card (TSNIC) – that leverages state-of-the-art Field

Programmable Gate Array (FPGA) technologies to continuously maintain the

integrity of tactical missions. The Smart NIC appears as an all-hardware “bump-

in-the-wire” along any network segment or attached to an industry standard bus

interface providing infrastructure defense for ground vehicles. It can be custom

configured to provide encryption, protocol and file format validation, and/or

protocol encapsulation. These capabilities are achieved by several innovations:

high-level synthesis (HLS) for rapid circuit development, automated parser

generation to adapt to mission requirements, and a hardware nano-marshal to

dynamically adapt defensive posture in the face of changing threat profiles.

Citation: J. Dahlstrom, S. Padnos, J. Brock, and S. Taylor, “The Tactical Smart NIC,” In Proceedings of the Ground

Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022.

1. INTRODUCTION
Many organizations handle sensitive data

and files relating to military missions, trade

secrets, intellectual property, private personal

data, and/or classified projects [1].

Traditionally, these organizations have been

well advised to implement an “airgap” that

physically disconnects computers containing

sensitive information from any connection to

the Internet, to protect against theft.

Unfortunately, airgaps come with substantial

cost in productivity and assume that the

relevant staff, with the expertise to handle

sensitive information, is co-located. Airgaps

are increasingly impractical given the need to

connect critical systems, such as industrial

plant, to cloud-based analytic platforms (e.g.,

Google Analytics) or support condition-

based maintenance of DoD vehicles [2,3,4].

Ground vehicles increasingly rely upon

standard networking technologies to link

embedded control systems with sensors,

actuators, and human machine interfaces

through industry standard buses -- CAN,

J1939, MIL-STD-1553, USB -- and other

communications interfaces – PCIe, Gigabit

Ethernet (GigE), and OpenVPX. In many

DISTRIBUTION A. Approved for Public Release,

Distribution Unlimited.

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

The Tactical Smart NIC, Dahlstrom, et al.

Page 2 of 10

instances, vehicles are periodically inter-

connected with military installations to

provide mission parameters, or to effect

maintenance and upgrades. Network

connected personal devices – phones, tablets,

and laptops – are increasingly being used to

manage and interact with these systems.

Though network boundary protections

generally separate installations from the

Internet, there are many threat vectors that

circumvent such protections: for example,

unintended connections, insiders, zero-day

exploits, supply chain interdiction, and

persistent implants [5].
This paper explores the capabilities of the

Tactical Smart Network Interface Card
(TSNIC) -- a network appliance technology
under development in the DARPA AMP
program. In a previous GVSETS article [6],
we explored its use for ground vehicle patch
analysis. This paper explores its more general
cyber security capabilities in support
infrastructure defense and condition-based
maintenance. In this application, the TSNIC
provides a hardware barrier between
network segments that continuously validates
mission traffic. Consequently, it acts to
constrain the attack surface behind
conventional boundary defenses, such as
firewalls and intrusion detection systems,
hardening the attached systems against cyber
threats.

2. DESIGN PHILOSOPHY
The Smart NIC is shown in Figure 1. It

consists, by design, of a single FPGA chip
interfacing directly to GigE and PCIe
interfaces on the left and bottom, and industry
standard buses via daughter cards attached to
the ribbon connector on the right. OpenVPX
is accommodated via a simple PCIe adaptor
or a variant of the board with an alternate
connector. In consequence, the appliance
forms a “bump-in the-wire” between any pair
of the available connections, with the FPGA
forming a bridge for all communication.
Consequently, the FPGA can monitor and
interact with all systems attached to its

interfaces and can act to store and forward
traffic between them.

Figure 1. Tactical Smart NIC

As an all-hardware appliance, the Smart
NIC offers several key security advantages:
All sensitive data -- encryption keys, buses,
and algorithmic functionality -- is strictly
hidden within the security perimeter afforded
by the FPGA chip-boundary [7,8,9,10,11],
mitigating reverse engineering in the event
that a TSNIC is lost or captured in the field;
No software is present in the device, thereby
mitigating malicious implants and zero-day
attacks; Either the PCIe or one of the GigE
connections can be used as an out-of-band
channel to adapt the device to alternate
mission profiles, augment its internal
functions, or upgrade the device; Extensive
anti-tamper and circuit destruction techniques
have been developed to enhance its resilience.

For versatility, all circuits resident in the
Smart NIC are developed using a rapid
prototyping technology termed High Level
Synthesis (HLS). This process allows
algorithm specifications to be designed and
tested in C, C++, or System-C. The working
code is then automatically transformed into a
standalone, reusable, hardware block. These
reusable circuit plugins can be directly
integrated into a static circuit design in the
FPGA. Alternatively, the block can be treated
as a container. Using a technique known as
partial reconfiguration, the FPGA can then
be partitioned into segments and containers
can be dynamically loaded into a partition
then linked into the overall function of the
device on-the-fly. To manage this process, we
have developed a thin, hypervisor-like
hardware layer termed a Nanomarshal [12].

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

The Tactical Smart NIC, Dahlstrom, et al.

Page 3 of 10

3. CRYPO ACCELLERATION PLUGIN
In its most primitive form, the Smart NIC

can be used purely as a crypto accelerator by

placing encryption and decryption blocks

between two of its interfaces. By default, the

appliance provides encryption/decryption

blocks implementing the Advanced

Encryption Standard (AES-256). These

plugin blocks have been certified under the

NIST Cryptographic Algorithm Validation

Program (CAVP).

Our initial rendering of AES into HLS, a

straightforward transliteration of the standard

algorithm, was discouraging, performing at

only 5Mb/sec [13]. Subsequently, we

standardized on a 16-byte wide AXI-stream

implementation that forms our current

baseline, and explored a variety of

optimizations and algorithmic alternatives,

based on the FIPS standard. The

optimizations did not involve low-level HDL

circuit design; instead, they were achieved

automatically using pragmas available

within the HLS process.

The results are summarized in Table 1

which defines the trade-space that can be

applied, based on application performance

requirements. This trade-space allows circuit

performance -- bandwidth (BW), maximum

clock frequency (Fmax), and latency (LAT)

in clock cycles/128bit block – to be traded for

FPGA resources -- Block RAM (BR), Flip-

flops (FF), and Lookup-Tables (LUT).

TABLE I. Implementation Trade-Space

TABLE I highlights 5 primary

optimization techniques: Loop Unrolling

parallelizes loops that do not contain data

dependencies between each iteration of the

loop. Array Partitioning removes the

serialization bottlenecks caused by parallel

data accesses that must queue for BRAM

interfaces. This optimization is achieved by

partitioning C-arrays into register sets that

can be accessed concurrently. Function In-

lining yields the hardware equivalent of

inline C-functions in which function bodies

are directly replicated at each call site. Cyclic

Partitioning optimizes the logic depth used to

achieve a single round of the AES algorithm

and thereby increases Fmax. Pipelining is a

standard technique in which data dependency

analysis is used to allow overlapping of

operations.

These studies led to the discovery of a

“sweet spot” in the trade-space: Without

Cyclic Partitioning and Pipelining (last 2

rows) – the implementation achieves close to

Gigabit line speed -- 0.82 G/sec -- with only

~2.5% LUT utilization on the Artix 200T

FPGA device used by default on the TSNIC.

Adding Cyclic Partitioning increases

performance to 1.1Gb/sec – exceeding line

speed -- but at heavy cost in LUT recourses

(~20% of the Artix 200T FPGA), while

pipelining again doubles LUT use.

Unfortunately, the AES “Cyclic Block

Chaining” (CBC) mode of operation has a

data dependency that limits pipelining.

However, “Counter” mode relieves this

dependency and yields a 9-fold speedup.

Note that generally two instances of the

encryption block are required: one for

encryption and one for concurrent decryption

(with similar resource requirements). A wide

variety of FPGAs with differing resources are

available for use on the TSNIC. The baseline

unit uses the Artix-7 -- the smallest family

that supports partial reconfiguration.

Method BW

Mb/

s

Fmax

MHz
LAT

cy/blk
BR FF LUT

Baseline

12 174 1880 4 611 1707

Loop
Unrolling

68 131 246 16 809 1740

Array

Partitioning

723 147 26 0 539 45036

Function

In-lining

822 167 26 0 658 3437

Cyclic

Partitioning

1103 224 26 0 542 23065

Pipelining

9216 144 2 0 557 44945

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

The Tactical Smart NIC, Dahlstrom, et al.

Page 4 of 10

4. PARSER PLUGINS

The TSNIC is concerned with monitoring

the flow of traffic across its interfaces and

validating both that messages adhere to an

industry standard protocol and that message

content is valid in the context of a tactical

mission. Generally, its action on detecting a

valid message is to allow it to pass;

conversely, its action on detecting invalid

data is to drop the message -- mitigating

potential exploitation -- and/or generate an

alert. To achieve message validation, the

TSNIC uses custom parsing engines that lay

across its communication paths.

Parsing is the general process of taking an

input stream of symbols and understanding

their format (syntax) and meaning

(semantics). For example, compilers such as

GCC use a parser to validate that a computer

program, written in some programming

language such as C/C++/Java/Fortran is

written correctly (i.e. is syntactically valid),

and to understand its structure (i.e. its

semantics) for the purpose of machine code

generation and optimization.

Parsers are tools that apply a collection of

formal grammar rules, defining some input

language, to determine if the input adheres to

the rules. For example, the following 3-rule

grammar G defines a language in which a

stream of symbols is valid only if it begins

with the character ‘a’, ends with ‘c’, and

contains one or more intervening ‘b’

characters:

G : ‘a’ Bs ‘c’ ;

Bs: ‘b’ | Bs ‘b’ ;

The “or” symbol | designates an alternative

definition for the rule defining “Bs”. This

grammar accepts as valid the input streams

abc, abbc and abbbc etc, but rejects any other

stream, e.g. a, ac, aaa, ccc, adx, abbbx, etc.

Individual characters such as ‘a’ are terminal

symbols that must be present in the input

stream; all other symbols are non-terminals

representing intermediate structural

elements. For binary grammars, hexadecimal

terminal values can also be used (e.g. ‘\xFF’

represents a single byte value corresponding

to 255 in decimal).

Parser generators are tools that take a

grammar as input and automatically generate

a program that implements the associated

parser. The most mature and widely used

generator is Bison which accepts two primary

classes of grammar: Generalized Look-

Ahead (GLR) and the more restrictive Left-

to-Right Look Ahead (LALR). Both classes

of grammar are expressed in Backus-Naur

Form (BNF), used above to define the

grammar G. Under the DARPA SafeDocs

program, new tools are being developed

based formal methods. One of the most

mature is the Hammer combinator library

which provides a collection of well-defined

base parsers and methods to combine them to

build more complex parsers. The resulting

parsers are provably correct by construction.

The Hammer library provides a collection of

backends that allow different classes of

grammar to be implemented, including GLR

and LALR.

Though GLR grammars are more general,

LALR grammars are sufficient for validating

a wide variety of protocol and file formats

and can be realized with a push-down

automaton – a finite state machine employing

a single stack to store symbols while parsing

the input stream. The state machine relies on

two core operations shift – involving saving a

symbol from the input onto the stack and

reduce – involving the application of a

grammar rule to detect a structure in the input

and reduce the symbols on the stack. The

state-machine is generic and common to all

grammars, however, the order in which shift

and reduce operations are applied to the input

is based on a collection of parsing tables

derived from the grammar (usually referred

to as action/goto tables [14]). These tables

map the current state of the automaton, to a

next state based on the symbol read from the

input stream.

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

The Tactical Smart NIC, Dahlstrom, et al.

Page 5 of 10

The TSNIC can employ any LALR

grammar written in either Bison or Hammer.

This is achieved through a fully automated

compilation process outlined in Figure 2.

Using Bison, the input grammar -- defined in

BNF -- is fed directly into the standard Bison

parser generator (leftmost brown path). For

Hammer, an equivalent parser is defined

using pre-existing combinators in C and

linked to the Hammer library (blue path).

These tools can both produce a set of parsing

tables expressed in a common machine-

readable XML format. A conversion tool –

xml2h – is used to convert the xml parsing

tables into a C-header file (pda.h) containing

a two-dimensional C-array. Rows in the

array correspond to states in the automaton,

while columns designate terminal and non-

terminal symbols encountered when reading

the input stream. Entries in the array

designate shift or reduce actions applied in

each state. Consequently, the C-array

provides a complete definition of how the

push-down automaton should operate to

validate any particular grammar.

Figure 2. Parser Automation Process

The C-array is combined with generic

LALR automaton (pda.c) [14] and testbench

code (main.c) to produce a runnable C-

program implementing the parser. This

parser is validated using a set of

representative test vectors files (purple) to

ensure that the parser operates correctly.

Since the parser is a well-structure C-

program it can then be fed directly into High-

Level Synthesis (HLS) to produce a

hardware implementation of the parser that

can be loaded onto the TSNIC as a plugin.

The hardware parser-plugin is validated

using hardware-software co-simulation

employing the same test-vectors and

testbench code used to validate the software

version of the parser.

Unfortunately, though the conventional C-

array is a convenient conceptual framework

to consider, it is impractical since it contains

many states that cannot in practice be

reached. Consequently, a highly optimized

alternative representation is used that

removes much of the sparse structure. These

optimizations use similar techniques to those

employed internally by Bison and are

described in detail in [15]. To illustrate how

these concepts map in practice, Table 2

characterizes the size of a variety parsers

taken from the Open-Source Parser

Experimentation Repository [16] in terms of

their rule and state set size. The Size column

shows the size of the unoptimized parser-

plugin in Kilobytes using conventional

parsing tables which would typically be

mapped to BRAM resources in the FPGA;

The Opt column shows the optimized size in

Kilobytes. The Result (Res) column shows

the improvement; typically, a compaction

more than 75% is achieved. For the Artix

200T, with 1.46Mbytes of BRAM, a full

JSON parser would consume ~2% of the

BRAM resources.

TABLE 2. Parser BRAM resources
Parser Rules States Size Opt Res

json 191 229 74 13.3 82%

com 880 854 481 69.5 85%

resp 271 279 151 6.3 96%

json w/

unicode

325 689 407 30.3 92%

5. ENCAPSULATION PLUGIN
The previous sections have described

plugin circuit blocks that operate on Ethernet

packets and provide AES Encrypt/Decrypt or

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

The Tactical Smart NIC, Dahlstrom, et al.

Page 6 of 10

validation. The TSNIC also employs a

generic parse-encrypt-encapsulate pipeline to

reformulate a packet to hide its content within

a standard IPSec Encapsulating Security

Payload (ESP) frame. Figure 3 illustrates

how this process operates between any two

communication ports IN and OUT.

Incoming Ethernet frames follow the

green path through the TSNIC with their

payloads temporarily stored in a data buffer

accessible to multiple plugins. An internal

random number generator is used to prepend

an 8-byte random value to the frame to add

entropy into short messages; A 2-byte length

field is also appended to the frame. The new

resulting frame forms an enhanced payload.

The enhanced payload and the associated

Ethernet/IP/Protocol header from the original

frame are treated separately. The enhanced

payload is concurrently encrypted and/or

parsed using the associated plugins (c.f.

Sections III and IV). The encryption plugin

simply encrypts the entire enhanced payload.

If the parser validates the packet, a signal

(OK) causes the encrypted enhanced payload

to be assembled into an IPSec ESP packet

using the header information from the

original packet. If the resulting payload is

larger than a single frame, the payload is sent

in two IPSec ESP packets, using the ESP

sequence numbering to label the packets for

decoding at the receiver.

Figure 3. TSNIC Datapath

At the receiver, only incoming IPSec ESP

packets are accepted by the TSNIC via the

blue path in Figure 3. The encrypted

enhanced payload is stripped out of the ESP

packet and the header information is also

separated out. The encrypted payload is

decrypted using the AES plugin. If parsing of

the resulting payload succeeds, the header

information and decrypted payload are used

to re-construct the original source ethernet

frame which is then passed to the receiver.

Any parsing algorithm specific to a

particular tactical mission can be used in the

encapsulation process. The parse-encrypt-

encapsulate pipeline can be instantiated

across any communication path within the

TSNIC between two interfaces: PCIe to

GigE, GigE to GigE, and GigE or PCIe to

CAN/J1939/1553. This is made possible

because all communication paths within the

device are rendered into the standard AXI-

stream representation, which can be

consistently buffered with FIFO’s and passed

between plugins at will.

6. PROTOCOL HANDLING OPTIONS
All the plugins described thus far operate

seamlessly on UDP traffic: Since there is no

coordination between sender and receiver,

simply dropping packets if they fail to

decrypt or parse is a highly effective control

mechanism.

For TCP and high-level protocols, simply

dropping packets offers several challenges

and options. TCP attempts to reliably deliver

an entire message, broken into multiple

packets, within a single session. To parse

large files and message transfers, it is

therefore necessary for parsing engines to

keep track of the beginning and end of each

message, using information contained in the

packet headers, and continue to parse across

breaks in the transfer that result in multiple

Ethernet frames. To parse large files, it is

possible to either parse the stream on the fly,

and close the session if parsing fails, or store

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

The Tactical Smart NIC, Dahlstrom, et al.

Page 7 of 10

and forward messages in their entirety.

Recall that the TSNIC provides a large on-

board RAM, outside the FPGA chip

boundary, to facilitate store and forward

options. This RAM can be viewed as an

extension of the FPGA trust-boundary

provided that all information contained

within it is encrypted and decrypted within

the trust boundary.

TCP is extremely belligerent, as one

would expect, in attempting to deliver a

message. If any single packet in a large

transfer is dropped, TCP will continually

timeout and resend that packet in futile,

continually intercepted and dropped,

reattempts to deliver the entire message.

Only after exhaustive attempts, will the

connection eventually timeout and close.

Unfortunately, this has several implications:

the session can remain open for several

minutes, causing any service receiving

packets to waste resources while the client

engages in repeated attempts at

retransmission, consuming bandwidth. To

avoid these delays and overheads, when

dropping a packet, it is possible to generate,

in hardware, a TCP RST message to the

receiver informing it to close the connection,

thereby allowing it to free resources and

proceed immediately. This technique is

commonly used by firewalls to close

problematic connections.

There are two options on how to handle

the sender: either to generate an “alert”

message -- assuming that the client is

legitimate with its channel intermittently

compromised -- or keep quiet deliberately

forcing the client to waste resources. The

former is most appropriate to embedded

situations where the client is being tampered

with through some pre-installed implant; the

latter is valuable in a case where there is

Internet connectivity, and it is desirable not

to disclose detection information to the client.

To ensure that an RST message cannot be

abused as a malicious attack, there are harsh

constraints on its use: it must carry a

legitimate sequence number within an

existing session and therefore lie within an

existing sequence. There are multiple ways to

achieve this. For example, to repurpose the

existing packet (i.e., the packet being

dropped) as the RST message or, to generate

a completely new RST message in hardware,

copying only the needed information fields to

cause the RST to operate correctly from the

existing message. To use the first technique,

the TCP payload associated with the packet

being dropped is truncated and removed, its

Ethernet- and IP-header remains unchanged,

IP and TCP checksums are regenerated, and

the FCS is regenerated – all in hardware. This

has the benefit that IP-header options may

exist and remain intact, while TCP-options

are rendered safe. This option therefore

allows IP-security options to be used, if they

are desired, however, it presents an

opportunity to inject malformed options. The

alternative is to construct a completely new

TCP RST packet in hardware, taking only the

necessary fields to affect the reset operation

from the packet being dropped. This higher-

level of assurance is more secure and

eliminates IP and TCP options to render them

safe. Obviously, there are a host of

intermediate alternatives between these

extremes.

One further option that we have employed

is to completely avoid TCP and only allow

UDP traffic. Obviously, this has the

disadvantage that in general there is no

assurance of delivery for the sender and large

messages must be segmented in some other

manner; Generally, these attributes would be

handled by the TCP SYN/ACK handshake.

However, it is possible to arrange an

alternative hardware signaling – that we term

a turnstile [11] – to notify a sender that

outgoing data and files have been received

intact. Unlike TCP this mechanism does not

require any communication to transition from

the receiver to the sender. It allows the

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

The Tactical Smart NIC, Dahlstrom, et al.

Page 8 of 10

TSNIC to operate as a diode or gateway,

protecting a sensitive network or mitigating

information leaks, but yet provide reliable

file and data delivery.

7. HARDWARE NANOMARSHAL
In a previous paper we have described a

software Nanomarshal technology developed
to support cross-domain applications [13].
That technology operates on System-on-Chip
devices, such as the Xilinx Zynq and
UltraScale MPSoC, that combine multiple
processors, with on-chip FPGA, and a diverse
variety of peripheral interfaces. The software
Nanomarshal provides the ability for a
container, with a designated identifier (id), to
be created, started, interrogated, stopped,
and destroyed at runtime using the Open
Containers Initiative (OCI) compliant
management interface.

Taking these ideas one step further, the
TSNIC employs a hardware nano-marshal
that allows hardware containers -- developed
and validated in C and rendered into hardware
through HLS -- to be instantiated and
managed from within the FPGA as illustrated
by the grey box in Figure 3.

Recall that all communication interfaces
inside the TSNIC are treated uniformly as
AXI-streams. The Nanomarshal manages the
FPGA as a collection of partitions. Partitions
are set in place astride each of the input and
output interfaces, as illustrated in Figure 3, to
form a generic harness. Using an advanced
technique termed partial reconfiguration, the
Nanomarshal can dynamically insert and
delete hardware containers into these
partitions, tearing down live streams and
connecting streams into the new containers
on-the-fly. The plugins described in previous
sections are all encapsulated as containers,
using an automated HLS workflow, allowing
them to be either present, or absent i.e.,
replaced by a container containing just an
AXI-stream wire. For example, when used
simply for encryption acceleration, the
parsing engine is absent; when used solely for

data validation, the encryption and
encapsulation engines are absent.

A container may wrap a working hardware
implementation of a particular algorithm with
additional information. For example, the AES
encryption plugin, when wrapped as a
container, includes an AES-256 encryption
key in a format that includes offline key-
expansion to optimize performance. Re-
keying can thus be achieved, through partial
reconfiguration, by dynamically replacing the
encryption container.

Though currently the Nanomarshal
operates with predefined containers set within
its harness, it is possible to employ either an
unused PCIe or GigE interface to form an out-
of-band backchannel (BCHNL) as illustrated
in Figure 3. This channel is completely
separated from normal traffic flow traversing
the TSNIC and used only to manage the
internals of the device from a separate air-
gapped network. This addition is the focus of
our existing work and would allow the TSNIC
to function as a High-Assurance Guard
(HAG), able to adaptively adjust its behavior
to perceived threat level. These ideas build
upon a Simple Network Management
Protocol (SNMP) backchannel already
available on our other products.

8. SHAPING THE ATTACK SURFACE
One unfortunate aspect of modern network

protections is that they tend to be focused on
the boundary of an installation, as illustrated
conceptually in Figure 5(a) as a circle around
a protected network.

Figure 4. Shaping the Attack Surface

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

The Tactical Smart NIC, Dahlstrom, et al.

Page 9 of 10

Recall that there are many methods to
breach boundary protections: supply chain
interdiction, unanticipated connections,
transient connections, trusted insiders, zero-
day exploits, and persistent implants to name
but a few. Once behind the boundary, all
connected systems form an attack surface that
is directly accessible and vulnerable,
moreover, communication is often in the clear
without encryption. Even when link-level
encryption is used, exploits may transition, in
encrypted form, to unprotected software
stacks on the other side of encryptors.

For embedded systems on military
vehicles, there are few locations that can serve
as such a boundary anyway, nowhere to host
complex intrusion detection systems, and no
time to act upon intrusions using conventional
CERT-like investigations: All defense must,
of necessity, be automatic and immediate.
Consequently, hardening the attack surface to
make intrusions difficult to perpetrate within
the timescales of a tactical mission, is a more
practical alternative.

Figure 5(b) shows how to achieve this
conceptually by placing TSNIC appliances at
the endpoints on selected links (black dots)
and using them to impose validated one-way
(green) [9] or bi-directional (gold) traffic
flow. This results in an attack surface shaped
to protect high-value assets. Traffic over these
links is continuously verified through parsing
and a multiplicity of encryption keys can be
imposed, on differing time-schedules, via an
out-of-band backchannel.

9. VIRTUAL ISOLATED NETWORKS
When multiple TSNIC’s are connected in

matched sets, they transparently form a

hardware overlay -- shown in Figure 5 – that

we term a Virtual Isolated Network (VIN)

[10]. A VIN allows any group of devices,

computers, or networks to inter-operate over

the Internet, while being completely isolated

from the rest of the Internet. Attached

systems can be anywhere in the world,

connected to any network, so long as there is

one wired connection into each TSNIC from

the Internet. Once connected into a VIN, each

system can only communicate with other

systems within the same VIN – effectively

creating a “virtual air-gap” around the VIN

that mitigates malicious intrusion and

continuously validates traffic.

Figure 5. Virtual Isolated Network (VIN)

Since no communication from the VIN to

other hosts on the Internet is possible, a VIN

is the appropriate location to house valuable

data that must be shared within it: cloud-

based databases, intellectual property,

industrial manufacturing data, maintenance

data, or private personal information (PPI). In

consequence, the TSNIC provides a

distributed alternative to accomplish the

goals for which an air gap was conceived.

Obviously, a collection of TSNIC devices

forming a VIN is not as inherently secure as

an air-gapped network: There is still a

connection to the Internet and users rely on

the hardware base-of-trust provided by the

TSNIC logic for security. However, the VIN

addresses the needs of organizations that seek

the middle ground between a completely air-

gapped network and one that is directly

connected to the Internet without protections

– a middle ground that can reap the benefit of

cloud-based services with lower risk.

10. CONCLUDING REMARKS
The TSNIC’s military utility is to harden

any network segment with real-time

hardware verification and protection – both

within military vehicles and more broadly,

military installations. In a previous paper [6],

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

The Tactical Smart NIC, Dahlstrom, et al.

Page 10 of 10

we have also described how the TSNIC is

used to directly monitor ground vehicle buses

-- akin to a logic analyzer. In that use case,

the device is directly attached to the J1939

bus and monitors a patched, instrumented

control system binary, providing high-

resolution timing and detailed analysis of

execution traces.

As an all-hardware device, the TSNIC

raises the barrier to intrusion, increases

attacker-workload, and mitigates reverse

engineering. It is not a replacement for

boundary defenses but rather complements

these protections and can be used anywhere

in the network hierarchy, shaping the attack

surface over which an adversary must

operate.

Internally, the TSNIC employs reusable

network interface and encryption

components but employs custom parsing

elements realized automatically though

High-Level Synthesis. This combines the

flexibility of software with the security and

performance of hardware. Hardware

Nanomarshal technology, built around partial

reconfiguration, extends the flexibility of

FPGA-based security allowing on-the-fly

changes to security posture in reaction to

perceived threats.

REFERENCES
[1] The IP Commission Report, The National

Bureau of Asian Research, 2013, updated in

2017 and 2021.

[2] C. Adams, “HUMS Technology”, Aviation

Today, May 2012.

https://www.aviationtoday.com/2012/05/01/

hums-technology/

[3] M.C. Carter, “Post Implementation CBM

Benefit Analysis – U. S. Army AH-64D

Apache Helicopter Main Transmission

Accessory Sprag Clutch Endurance Project”,

Annual Conference of the Prognostics and

Health Management Society 2013.

[4] P. Shanthakumaran, “Usage Based Fatigue

Damage Calculation for AH-64 Apache

Dynamic Components”, The American

Helicopter Society 66th Annual Forum,

Phoenix, Arizona, May 11-13, 2010.

[5] D. Kushner, “The Real Story of STUXNET

“, IEEE Spectrum, Feb 2013.

[6] J. Brock, J. Dahlstrom, S. Wille Padnos, S.

Taylor, “Real-time Analysis of Vehicle

Patches and Binaries”, In Proceedings of the

Ground Vehicle Systems Engineering and

Technology Symposium (GVSETS), NDIA,

Novi, MI, Aug. 10-12, 2021.

[7] Jason Dahlstrom and Stephen Taylor,

"System-on-Chip Data Security Appliance

and Methods of Operating the Same", U.S.

Patent 10,148,761, Dec 4 2018.

[8] Jason Dahlstrom and Stephen Taylor,

"Endpoints for Performing Distributed

Sensing and Control and Methods of

Operating the Same", US Patent 10,440,121 ,

Oct 8 2019.

[9] Jason Dahlstrom and Stephen Taylor,

"System-on-Chip Data Security Appliance

and Methods of Operating the Same", U.S.

Patent 10,389,817, Aug 20 2019. Diode
Continuation Patent.

[10] Jason Dahlstrom and Stephen Taylor,

"System-On-Chip Data Security Appliance

Encryption Device and Methods of Operating

the Same", U.S. Patent 10,616,344, Apr 7

2020. VIN Continuation Patent.

[11] Jason Dahlstrom and Stephen Taylor,

"Hardware Turnstile", U.S. Patent

10,938,913, Mar 2, 2021.

[12] Jason Dahlstrom, James Brock,

Mekedem Tenaw, Matthew Shaver and

Stephen Taylor, "Hardening Containers for

Cross-Domain Applications," MILCOM

2019, Norfolk, VA, USA, 2019, pp. 1-6.

[13] B. Nicholas, SSL Hardware Hiding:

Increasing the Security of OpenSSL Through

Tightly Coupled FPGA Hardware, M.Sc.

Thesis, Thayer School of Engineering at

Dartmouth, Nov. 2017.

[14] A.V. Aho, R. Sethi, J.D.Ullman,

“Compilers”, Addison Wesley, 1988.

[15] S. K. Popuri, “Understanding C parsers

generated by GNU Bison”, Sept 2006.

https://www.cs.uic.edu/~spopuri/cparser.htm

[16] Parser Experimentation Library: Thayer

School of Engineering at Dartmouth College.

https://github.com/lvln/thayer_parsers.

	1. INTRODUCTION
	2. DESIGN PHILOSOPHY
	3. CRYPO ACCELLERATION PLUGIN
	4. PARSER PLUGINS
	5. ENCAPSULATION PLUGIN
	6. PROTOCOL HANDLING OPTIONS
	7. HARDWARE NANOMARSHAL
	8. SHAPING THE ATTACK SURFACE
	9. VIRTUAL ISOLATED NETWORKS
	10. CONCLUDING REMARKS

